Fibonacci序列:1,2,3,5,8,13,...
F(n)=F(n-1)+F(n-2),F(0)=1,F(1)=2
任意正整数n,可以表示为Fibonacci序列的和,例如:10=8+2,记为10010;17=13+3+1,记为100101;同时10=5+3+2,记为01110。试给出所有可能的序列组合。
下面为我的代码实现:
#include
#include
#include
using namespace std;
// construct Fibonacci series
void
construct_fibonacci(vector &set, int num)
{
int f0 = 1;
int f1 = 2;
set.push_back(f0);
set.push_back(f1);
int f2;
do {
f2 = f0 + f1;
set.push_back(f2);
f0 = f1;
f1 = f2;
} while (num > f2);
if (f2 > num)
set.pop_back();
}
inline void
clear_bit(int *bit, size_t n)
{
for (size_t i = 0; i < n; ++i)
bit[i] = 0;
}
bool
rec_find_fib(int num, size_t pos, const vector &set, int *bit)
{
if (1 == num) {
bit[0] = 1;
return true;
}
if (2 == num) {
bit[1] = 1;
return true;
}
size_t tpos = pos;
while (set[tpos] > num)
--tpos;
bit[tpos] = 1;
if (num == set[tpos])
return true;
else {
num -= set[tpos];
if (num == set[tpos])
return false;
return rec_find_fib(num, tpos, set, bit);
}
}
void
output_fib(size_t nset, int *bit)
{
for (int i = (int)nset - 1; i >= 0; --i)
cout << (bit[i] ? "1" : "0");
cout << endl;
}
// use pos for remove duplicate output
void
rec_pos_fib(int *bit, size_t nset, size_t pos)
{
int pos_1 = -1;
int num_0 = 0;
bool count = false;
for (int i = (int)pos; i >= 0; --i) {
if (bit[i]) {
count = true;
pos_1 = i;
num_0 = 0;
} else if (count) {
++num_0;
if (2 == num_0) {
// two zero encountered, convert "100" to "011"
bit[pos_1] = 0;
bit[pos_1-1] = 1;
bit[pos_1-2] = 1;
output_fib(nset, bit);
// recursively try
rec_pos_fib(bit, nset, (size_t)i);
// restore
bit[pos_1] = 1;
bit[pos_1-1] = 0;
bit[pos_1-2] = 0;
count = false;
num_0 = 0;
}
}
}
}
void
find_fib(const vector &set, int num, size_t nset, int *bit)
{
clear_bit(bit, nset);
bool res = rec_find_fib(num, nset - 1, set, bit);
if (res)
output_fib(nset, bit);
rec_pos_fib(bit, nset, nset - 1);
}
main()
{
int num;
cin >> num;
if (num < 3)
exit(1);
// construct Fibonacci set
vector set;
construct_fibonacci(set, num);
size_t nset = set.size();
int *bit = new int[nset];
find_fib(set, num, nset, bit);
delete [] bit;
}
1 条评论:
Hello. This post is likeable, and your blog is very interesting, congratulations :-). I will add in my blogroll =). If possible gives a last there on my blog, it is about the Flores Online, I hope you enjoy. The address is http://flores-on-line.blogspot.com. A hug.
发表评论